
www.technology-journal.com

The International
JOURNAL
of

TECHNOLOGY,
KNOWLEDGE
& SOCIETY

Volume 4, Number 4

Executable Texts: Programs as Communications
Devices and Their Use in Shaping High-Tech

Culture

Stuart Mawler

THE INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY
http://www.Technology-Journal.com

First published in 2008 in Melbourne, Australia by Common Ground Publishing Pty Ltd
www.CommonGroundPublishing.com.

© 2008 (individual papers), the author(s)
© 2008 (selection and editorial matter) Common Ground

Authors are responsible for the accuracy of citations, quotations, diagrams, tables and maps.

All rights reserved. Apart from fair use for the purposes of study, research, criticism or review as
permitted under the Copyright Act (Australia), no part of this work may be reproduced without written
permission from the publisher. For permissions and other inquiries, please contact
<cg-support@commongroundpublishing.com>.

ISSN: 1832-3669
Publisher Site: http://www.Technology-Journal.com

THE INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY is a peer
refereed journal. Full papers submitted for publication are refereed by Associate Editors through
anonymous referee processes.

Typeset in Common Ground Markup Language using CGCreator multichannel typesetting system
http://www.CommonGroundSoftware.com.

Executable Texts: Programs asCommunicationsDevices and Their
Use in Shaping High-Tech Culture
Stuart Mawler, Virginia Tech, UNITED STATES

Abstract: This paper takes a fresh look at software, treating it as a document, manuscript, corpus, or text to be consumed
among communities of programmers and uncovering the social roles of these texts within two specific sub-communities and
comparing them. In the paper, the social roles of the texts are placed within the context of the technical and cultural constraints
and environments in which programs are written. Within that context, the social roles of the comments are emphasized, and
are combined with the normative intentions for each comment, creating a dynamic relationship of form and function for
both normative and identity-oriented purposes. The relationship of form and function is used as a unifying concept for a
more detailed investigation of the construction of comments, including a look at a literary device that relies on the plural
pronoun “we” as the subject. The comments used in this analysis are derived from within the source code of the Linux
kernel and from a Corporate environment in the US.

Keywords: Programming, Programming Culture, Code Comments, Communications, Open-Source

Introduction

THIS PAPER REFOCUSES the view of
software away from the utilitarian purposes
of its completed form and toward its uses as
both a communications medium and the

central medium for discussing and defining values
within computer culture. To reach its completed
form, the vast majority of software is written and
maintained in human-readable text (called source
code), then converted by another piece of software
(the compiler / interpreter) into machine-readable
executable code (also called object code). In addition,
software is usually not composed of a single pro-
gram, but is made up of many small programs and
other file types that serve specific purposes. These
additional files are also written in human-readable
formats andmay be used in this format by the execut-
able code. Taken together, I have dubbed any text-
based file an “executable text,” since these texts are
intended to be used in the execution of a function or
program, but are also intended to be written and read
as a text. In this situation, a “text” is to be viewed
with almost Biblical connotations, in the sense of a
document that can be opened and read, a manuscript
that is written “by hand” and pored over by other
developers, or a corpus representing the shared
knowledge of the group.
Contemporary programming style guides urge

programmers to “code for human consumption”
(Jones). Since these texts are to be read, we can
conclude that the executable text is a communicative
device, as would be expected of any text. When
programmers look at source code, the code provides
information about the program’s functions; it acts as

a repository of information. In addition, most pro-
gramming languages have a built-in capability to
include natural language comments, without impact-
ing the operation of the running code (often being
removed by the translation step from human to ma-
chine-readable). These comments are considered
“documentation.”
The normative structures and processes of program-

ming encourage individual programmers to include
comments within the body of the text.While the code
is considered by many to speak for itself (Kernighan
& Plauger, 151), practices encourage comments as
a means to address issues of complexity and wider
context that might make the code within one program
difficult to understand. The comments illuminate
specific modes of programming, complicated al-
gorithms, history of changes to the text, or some
collective information on the specific business or
technical problem being addressed. Comments gen-
erally serve to make modifications, corrections, and
enhancements simpler in the future—they “tell you
(and any future developer) what the program is inten-
ded to do” (Jones) and provide this information
beyond the view of most “ordinary users.” However,
comments serve many roles beyond the norms es-
poused by industry leaders.

The Source Archives
To complete this study, I have relied on two collec-
tions of executable texts from vastly different tech-
nological frames; the Linux kernel and a Corporate
sample from a proprietary environment. Linux is an
open-source operating system, meaning that the
source code is available freely on the internet and

THE INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY,
VOLUME 4, NUMBER 4, 2008

http://www.Technology-Journal.com, ISSN 1832-3669
© Common Ground, Stuart Mawler, All Rights Reserved, Permissions: cg-support@commongroundpublishing.com

development occurs collaboratively across a wide,
and voluntary, community. The kernel was selected
for greater attention since it is a key portion of the
operating system, handling interaction between the
system and the hardware itself. Within the Linux
kernel, I have focused on 12 specific executable texts
of varying lengths.
The Corporate sample comes from an internal IT
department supporting the consumer customer data-
base of a large US-based corporation. The seven
texts in the set are all COBOL modules, intended to
be executed on the mainframe, where the texts were
originally composed and all subsequent maintenance
occurs. The centrality of the customer database to
business goals, coupled with the age of the system
makes the comparison with Linux kernel relevant.

Constructing Comments
While the normative intent and purpose of comments
is a factor in their construction, there are specific
considerations driven by a combination of the lan-
guage used (C versus COBOL), the environment
(PC-based versus mainframe-based), and the culture
(open-source versus proprietary) in which it is used.

Language
Though almost every language retains the ability to
include natural language comments along with the
symbolic logic of the program code, the format of
the comments is different in each. In C, comments
all begin with a “forward slash” (“/”), followed by
an asterisk (“*”), and are concluded by the re-
verse—an asterisk (“*”), followed by another for-
ward slash (“/”). All information between those two
sets of marks will not be included in the operation
of the program. While the compiler (the program
that converts the symbolic logic in the text from
source code to object code) only requires the starting
and endingmarks, individual developers may choose
to use other characters as purely visual devices,
making human identification of the comment quicker
and easier.
Comments within COBOL are signified by an as-

terisk (“*”) at the start of the line (which will be
numbered sequentially by the environment, unlike
C, which has no embedded line numbers). All inform-
ation on that line to the right of the asterisk will not
be included in the operation of the program. Only
one asterisk is needed to remove a line from the
production run of the program. As with C, beyond
the characters required for a comment, all other
characters are purely for human convenience, style,
or information.
In addition to creating natural language comments,

comment characters (e.g., the asterisk) can also be
used to prevent execution of a line of otherwise ma-

chine-ready code. Programmers refer to these as lines
of code that have been “commented out.”

Environment
Creating and maintaining the C source code for
Linux is done in a wide variety of ways, according
to the preferences of the individual developers, who
each select their own “graphical” editor tomanipulate
the code. These graphical editors can be configured
to highlight comments (among other items) in differ-
ent colors, helping to visually separate them from
the symbolic code. In addition, graphical editors can
be configured to display many lines on the screen,
simply by changingwindow size or screen resolution.
In contrast, creating and maintaining COBOL

programs purely within the mainframe environment
offers programmers an interface paradigm (in the
Kuhnian sense) that has been abandoned by almost
all other disciplines. In a pure mainframe environ-
ment (as in the Corporate sampling), there are no
graphical user interface tools beyond monochrome
text on a monochrome background, meaning that
comments, section headings, and any other notable
items must be highlighted with text characters set
off from the code by an asterisk at the start of the
line. However, the mainframe environment presents
an additional technology-specific constraint: screen
“real estate.” A visually arresting comment must be
balanced against occupying many lines on a screen
that only displays approximately 30 lines at a time,
depending on user configuration. This tension
between information and screen real estate results
in some extremely terse comment styles. In one
representative example, a single line contains the
programmer’s identity, the date, the project spawning
the change, the release that included the change, and
the fact that the line was the start of a multi-line edit
(Corporate Source Code, Program-1).

Culture
In the Linux kernel, the most important influence on
the form and tone of comments is the collaborative
and voluntary nature of open-source development.
Unlike a proprietary environment, Linux developers
take on a task because it is of ideological or artistic
importance to them, rather than just being a job. As
a result, there is a generally congenial tone within
the comments, even where there are debates about
the appropriate method to code a particular passage.
Out of the set of programs, I found no instances of
overtly antagonistic language, while such language
was common in the Corporate sample.
Another culturally specific practice is the use of

comments to mark the start and/or end of a change
to the symbolic code. Following this practice, a pro-
grammerwould create a comment immediately above

THE INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 42

the line(s) of code to be changed and possibly one
directly below the last line of code to be changed. In
the Corporate sample I have found this practice quite
common, but it does not exist within the Linux ker-
nel.
In the Corporate sample, it is the size and scope

of work, together with both the hierarchical nature
of the organization and the linguistic and technical
environment, which most strongly influences the
form and content of the comments. As in the example
cited earlier, terseness is valued as a result of the
screen constraints, but further identification of de-
velopers beyond initials is largely unnecessary since
the staff is close-knit and relatively static over time.

MappingComments: Form/FunctionGrid
Network interoperability conferences have been said
to “highlight the performative nature of standards”
(Slaton & Abbate, 135). Similarly, comments have
standards or norms of form and function, but they
also serve a performative or identity-oriented func-
tion in both the Linux and Corporate environments.
In each, the individual writes for the consumption
of the group, staging his/her own performance with
each comment, and how the individual chooses to
stage that performance reflects on the group dynamic
in which that performance occurs.
In order to better visualize the many roles a single

comment may play within an executable text, I have
conceptualized each comment as consisting of both
form and function, which I have then mapped on a
grid (see Figure 1).

Figure 1: Form & Function Framework for Code Comments

The grid is in the form of an x-y axis, where the ori-
gin represents both normative form and function.
Traveling to the right, along the x-axis, the function
becomes increasingly identity-oriented. Traveling
up, along the y-axis, the form becomes increasingly
identity-oriented. Hence, a completely normative
(“good”) comment (in both form and function) would
be plotted at or adjacent to the origin (as in the case

of the inline COBOL comment referenced above),
while a completely identity-oriented comment would
be plotted in the far upper-right corner.
Rarely is a comment completely devoid of both

normative form and function, placing it in the upper
right corner of the grid, but some come very close,
as in the following example.

The futex comment conveys functional information
only in as much as the reader is intended to under-

3STUART MAWLER

stand that a futex is a complicated item that can be
tricky to use. Instead, the reader is presented with
arcane and ironic humor.
The Form/Function Grid is intended as a qualitat-

ive tool for visualization only. Few comments are
ever devoid of normative information, and no com-
ment is ever devoid of group identity, since the basic
form is determined by the language, environment,
and culture in which the comment is written. What
seems purely normative in one setting seems highly
identity-oriented in another, highlighting the wider
community-related identity work performed by the
comments and their structure, down to the presenta-
tion on the screen.

“Good” Comments
Looking directly at the usefulness of specific com-
ments, one author asserts that “the availability of
prose explanation of [an] algorithmwill have a much
larger influence on the speedwithwhich the program-
mer understands the program than variations in the
structure of the program” (Brooks, 200). Hence a
“good” comment simply aids in the understanding
of a program.
Where “good” comments begin to occupy other

spaces is in the descriptive content. Discussing
maintenance, one writer noted that a developer,
“having exhausted the resources of local myth and
legend, has no alternative but to actually read the
code he is required to fix” (Deimel, 5). However, the
comments often rely on just this local myth and le-
gend as part of the explanation process, as the inclu-
sion of project names in the comments indicates (as
in the Corporate sample).
However, onewriter acknowledges that comments,

no matter how well-intentioned, can contain suspect
information, saying, “The comments do not affect
the meaning of the text source but they may help
readers to discover the intendedmeaning” (Arab, 42,
emphasis mine). Despite problems associated with
comments, writers continue to believe in their import-
ance.
The primary problem with comments, good or

bad, is that information placed in a comment is not
required to be maintained by any enforcement
mechanism, unlike the code itself.With the symbolic
logic of the code, a compiler enforces at least minim-
al syntactic correctness, and compiled code will
generally be tested and used.
Since comments are ignored by the compiler and

therefore cannot be tested by either the compiler or
the users themselves, the only reason a comment will
stay in synch with the logic is if the developers be-
lieve it is important to their own understanding. This
problem of code and comment synchronization is a
source of concern for theorists, based on the seem-

ingly contradictory stances they take regarding the
use of comments. One classic book on programming
style asserts, “The only reliable documentation of a
computer program is the code itself. […] Only by
reading the code can the programmer know for sure
what the program does” (Kernighan& Plauger, 141).
However, the same authors go on to devote thirteen
pages “to style in commenting” (Kernighan &
Plauger, 141), further stating, “[…] An excellent
program […] is thoroughly commented and neatly
formatted” (Kernighan & Plauger, 150). Clearly,
comments are a critical element of good program-
ming.

Identity-Orientation
Of course, that programmers include comments at
all is a social convention, as much a practice as it is
information conveyance. Social conventions cover
a range of purposes that far outweigh the official
goals of comments within programs. Social conven-
tions surround the very structure of the language in
the comments, which is often used to further partic-
ular social or psychological goals, though these ef-
forts are different in each sub-community of program-
mers.
One social goal is the establishment and mainten-

ance of power, and providing inaccurate comments
may effectively provide a developer with power.
This power may be social and intangible or directly
monetary, since ambiguity in the comments may
“facilitate having a lucrative business of selling ex-
pensive service contracts and consulting services for
the software” (“Documentation Definition”).
Comments can also serve as conversations with

the wider community. These conversations highlight
areas where there is uncertainty about the code
function (primarily in the Corporate sample) or where
future fixes would ideally be made (found in both
samples).

“We” Construction
While there is definitely evidence that comments are
formed and have functions outside the normative
practices of programming, there are far more subtle
literary forms at work within the comments. Within
the Linux kernel, there exists a consistent use of the
subject “we” within the comments.
The “we” literary form found in the comments

performs three functions. Firstly, the literary form
allows elevation of the programmer (and his/her
programming discipline) from technician to teacher,
associating programming discourse with academic
discourse. Secondly, the literary form helps maintain
boundaries with outside individuals, organizations,
and specifically users. Finally, the literary form ex-
pands the group identity to include not just the pro-

THE INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 44

grammers, but the machines and software systems
they create and manage as a cyborg community (see
Haraway; and Downey, Dumit, & Williams). Not-
ably, the Corporate sample contains very different
language that occupies the space of group elevation,
but nothing in the latter two categories.

In the Linux kernel, lines containing the “we”
construction represent 12.92% of the total lines of
comments. In contrast, the Corporate sample of just
seven files contains only 36 lines with the “we”
construction, representing just 0.57% of the total
lines of comments (see Table 1).

Table 1: Comparison of Comment Dostribution

Corporate Sample:Linux Sample:
752Total Files
28,30441, 505Total Lines
62945711Lines with Comments
22.24%13.75%Precentage of Comments to Total

Lines
36738Lines with “we” Construction
0.13%1.78%Percentage of total lines with “we”
0.57%12.92%Percentage of Comment lines with

“we”

The statistics serve to support several assumptions.
First, COBOL programs are often assumed to be
much longer than C programs, though this is not a
technical requirement. However, the Linux sample
is not even one and a half (1.5) times larger than the
Corporate sample is terms of lines of code, despite
being more than seven (7) times larger in terms of
the number of files. Second is an assumption that
developers do not like to write comments or explain
themselves, believing that good code will simply
speak for itself. Despite having both a larger number
of files and more lines of code, the Linux sample has
583 fewer lines with comments than the Corporate
sample, hinting that developers may comment more
when the activity is required. Third, the greater pro-
duction life of the Corporate sample provides more
opportunity for comments to be written. Fourth, the
practice of commenting out obsolete lines of code
in the Corporate sample results in a much higher
percentage of comments to total lines, even though
the resulting comments lack explanatory power and
may contribute to overall confusion regarding the
function of the particular program.
Most importantly, however, the differences

between the two samples shed light on the different
community values. The lower frequency of the “we”
construction within the Corporate sample signifies

less emphasis on group identity and boundaries and
more emphasis on individual identity through sar-
casm and other devices. Further, in the Corporate
sample, the use of imperative verbs dominate, mak-
ing the comments with a lecture-like tone take on a
more hierarchical sense of an order being issued or
perhaps complaints and diatribes against those not
“following the rules.” Even where the Linux and
Corporate samples have similar identity-oriented
purposes, the comments follow the pattern of group
emphasis in the Linux sample and individualism and
imperative verbs in the Corporate sample, standing
somewhat in contrast with the relative stability of
the corporate team over time.

Group Elevation
In some ways, group elevation is the most subtle but
pervasive of the identity-oriented uses of comments.
Comments serving this purpose are highly normative
in function and yet identity-oriented in form, though
often falling along the boundary between the two
left quadrants of the form/function grid. The form
of these comments gives weight and responsibility
to the programmers, making them more than mere
technicians.

5STUART MAWLER

The form of the above example is that of a lecture
in the sense of an academic situation, where the au-
thority figure once typically used “we” extensively.
I describe this as a grammar of justification, follow-
ing Mulkay’s “vocabularies of justification”
(Mulkay, 637-656), where the grammar justifies el-
evation of programmer status to that of professor or
leader.
Educational comments also appear throughout the
Corporate sample, however, the use of the “we”
construction is nearly absent. In one example, a
comment provides developers with basic information
about the structure of all COBOL programs, which
is neither specific to the environment (cultural or
technical) nor unique to the implementation or
methodology; it simply educates later developers
(Corporate Source Code, Program-7). This is not a
“good” comment in the normative sense, but serves
to reinforce the personal identity of the developer
who is capable of and driven to provide such program-
ming guidance.
While there is a lecturing or educational tone to many
of the comments in the Linux sample, there are few,
if any, outside references to other “knowledge do-

mains” (see Brooks) or embedded programming style
guides, as there are in the Corporate sample. This
disparity between the samples is reflective of the
different make-up of each community. Unlike in the
Corporate sample, programmers in the Linux sample
are expected to be proficient in order to be able to
contribute, making overt style guides and program-
ming recommendations embedded within comments
unnecessary.

Boundaries
Importantly, the literary device of the “we” construc-
tion brings out the boundary work that programmers,
like other disciplines, perform on a regular basis
(Gieryn, 792-93). The comments in the Linux kernel
highlight the tensions and trust issues between pro-
grammers and their users, at one point directly say-
ing, “We only trust the superuser with rebooting the
system” (Linux Souce Code, “sys.c”). This statement
places general users on the outside and leaves out
the implied assumption that a “superuser” is a highly
technical user and very likely a programmer.

Note also that the entities needed to reboot the entire
system are not “keys,” or “control characters.” In-
stead, these are “magic arguments,” which constructs
a position for programmers as magician or wizard,
who only allow “superusers” access to the “magic
arguments.”
These examples of boundary work still provide in-
formation about the source code with which they
appear, though it could be argued that the informa-
tional function is limited. What seems clear, how-
ever, is the identity oriented form in each, placing

them in between the top two quadrants of the
form/function grid.

Cyborg Community
In the final usage of the “we” construction, the
boundaries maintained by the programmers are ex-
panded to include the machine and the software the
programmers create to run on it, creating a cyborg
community. To be able to extend that boundary, it
might be argued that the machine needs to be on the
same plane as the programmer.

THE INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 46

The programmer in the above example notes that the
compilers “disobey” in some situations. While the
behavior of the compiler is dependent upon the in-
structions given to it (and how well it was pro-
grammed in the first place), the computer has been
raised up to a level where the programmer can con-
sider it to be within his/her boundary.
In terms of the form/function grid, the above

comment serves a highly normative function, how-

ever, the form is highly identity-oriented, since the
function is merely implied and the computer so
heavily anthropomorphized.
However, the language of the comments moves

from merely casting human attributes on the system
to an association with the system, being most thor-
oughly realized in this example, which enhances
cyborg identity:

The literary “we” embedded in this paragraph is
powerful in its linking of the author and his/her cre-
ation. In particular, notice the parenthetical statement
in the third sentence, where “we” technically refers
to a particular CPU, but the author clearly associates
him/herself with that hardware and embeds
him/herself in the software as though directing the
function in real-time.
While Turkle positions her work as the opportunity

to “see the computer as partner in a great diversity
of relationships” (Turkle, 20), the “we” construction
seems to speak to significantly different relation all
together. In this case, rather than being a partner, the
computer is part of the unit, creating the cyborg rela-
tionship, not as partner, but as part and constitutive
element. Unlike Turkle’s version of programmer
anthropormorphizing, the Linux “we” construction
does not encourage programmers to think of them-
selves “like” a machine, where the machine is a
model for cognition. Rather, the “we” construction
creates the Haraway-like cyborg model, where the
programmer is actually part of the machine.

The conceptual plotting of this comment on the
form/function grid also highlights an interesting
phenomenon. The function is largely informative,
however, the form, including the use of the “we”
metaphor is highly identity-oriented, creating a ten-
sion between a form that serves identity-oriented
goals and a function serving largely normative goals.
The complexity of this last example forms a micro
case study of how multiple uses and goals for com-
ments can exist within the context of a particular
technological frame (or set of frames), without taking
any power away from the “official” normative goals.

Corporate Identity
Instead of establishing boundaries or cyborg identity,
the Corporate sample seems to emphasize individual
identity using mild humor. In one example, an
unidentified developer concluded three different but
related edits with the same tag line:

While the comments are all unsigned, we know the
identity of the problem that caused the change, so

within the day-to-day workings of the office, the
identity of the developer would likely be well known.

7STUART MAWLER

The humor is also clearly evident, with fun poked at
several areas, including the corporate direction on
technology, the ability for IT to keep track of user
requests for new capabilities, and the programming
prowess of prior programmers.

Conclusion
Comments have an “official” or normative pur-
pose—explain how the programworks—and a close
reading of various programs in radically different
settings shows this to be a valid and “real” use. As
has been written regarding standards, the basic tools
of a discipline are perceived as “knowledge rather
than practice” (Slaton & Abbate, 124). Comments
are considered to include information about a pro-
gram and even an organization or community. As
the items above show, there is indeed information
(knowledge), but the comments are clearly a practice
and a performance.
However, that same reading also reveals much

more. At the most fundamental level, the structure
of comments is strongly influenced by the program-
ming language, the technical environment, and the
culture in which they are written. More importantly,
while clearly performing normative functions, the
form allows constructions that help elevate the pro-
gramming community, establish and defend com-
munity boundaries, stretch the definition of program-
ming community to become a cyborg community,
including the systems the programmers create and
the machines on which they run, and help individuals
establish their own identity.
One specific lesson from the comments is that

very specific types of community will be created by
and reflected in the discussions and interactions in
the source code comments. As Sherry Turkle writes,
“A computer program is a reflection of its program-
mer’s mind” (Turkle, 24), and the comments will
occupy a similar mental space. The greater emphasis
in the Linux sample on the “we” construction reflects
a more collegial atmosphere, highlighting the volun-
tary nature of the project, which relies on the good
will of the collected organization. The Corporate
sample is more combative and directive in tone and
structure, reflecting the hierarchical structure of the
organizations in which they are constructed.
Importantly, what programmers establish and then

reflect through these comments might be called

“ownership” or “connection” with the product of the
programming endeavor. Speaking of toys, Sherry
Turkle says, “When people are asked to care for a
computational creature and it thrives under their
ministrations, they become attached, feel connection,
and sometimesmuchmore” (Turkle, 290), essentially
describing how programmers relate to their work.
Following the process of anthropomorphizing, the
machines and systems used and built by the program-
mers become creatures that are nurtured and min-
istered to by the programmers. In some cases, the
creatures are given life by the programmers. This is
a feeling common to all programming, not just open
source. Any significant amount of time spent caring
for a program, or set of programs results in attach-
ment and connection.
It would be tempting to assume that open source

programmers have a greater degree of connection to
their projects, but the writing of the programmers in
their comments does not seem to support this, with,
if anything, more passion expressed by the Corporate
programmers than by the Linux programmers. The
connection is likely the result of longevity, since
both sets of code are relatively old (though the Cor-
porate sample is older), but also specialization. Par-
ticular programmers specialize, either by choice, as
in the Linux sample, or by a combination of choice
and management directive, as in the Corporate ex-
ample. This helps reinforce the sense of ownership
inherent in programming, since, as Sherry Turkle
says, “a large computer system is a complicated
thing”, leaving “plenty of room for territoriality”
(Turkle, 198). This territoriality is alternatively to
be seen as attachment and connection to the creatures
spawned by the care given to the machine.
While some writers have attempted to view com-

ments as explanatory only for the text at hand and
to view the texts simply as programs to control a
machine, I conclude that comments are a critical re-
source in the establishment and/or reinforcement of
identity on both a group and personal level, through
their role in the executable texts. The identity-ori-
ented purposes of executable texts can only be re-
moved from texts when “the theory is unconcerned
with personality characteristics of programmers, with
the effects of varyingmotivational conditions or with
social interaction in programming groups” (Brooks,
200), which is a less-than-useful way to approach
either a social group or a form of communication.

References
Bijker, Wiebe, E. “The Social Construction of Bakelite: Toward a Theory of Invention” in Bijker, W. E., T.P Hughes, and

T.J, Pinch (eds.), The Social Construction of Technological Systems: New Directions in the Sociology and History
of Technology, Cambridge, MA: MIT Press, 1987, pp 159-187.

Brooks, Ruven. “Using a Behavioral Theory of Program Comprehension.” Proceedings of the 3rd International Conference
on Software Engineering. IEEE Press, May 1978.

THE INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 48

“DocumentationDefinition.” unsigned. Linux Information Project, 23 February 2006; from: http://www.bellevuelinux.org/doc-
umentation.html, 2006/03/01.

Downey, Gary, Joseph Dumit, & Sarah Williams. “Cyborg Anthropology,” in Cultural Anthropology 10(2) (1995): p. 264-
269.

Gieryn, Thomas. “Boundary-Work and the Demarcation of Science from Non-Science: Strains and Interests in Professional
Ideologies of Scientists” in American Sociological Review 48, pp. 781-795, 1983.

Haraway, Donna Jeane. Simians, Cyborgs, and Women: The Reinvention of Nature. New York: Routledge, 1991.
Jones, Duncan Edwards. “The seven secrets of successful programmers.” The Code Project; from: http://www.codepro-

ject.com/tips/7secrets.asp, 2006/03/01.
Kernighan, Brian W. & P.J. Plauger. The Elements of Programming Style, 2nd Ed. McGraw-Hill, 1978.
Mulkay, Michael J. “Norms and ideology in science,” in Sociology of Science 15 (4/5), pp. 637-656, 1976.
Slaton, Amy and Janet Abbate. “The Hidden Lives of Standards: Technical Prescriptions and the Transformation of Work

in America”. In Technologies of Power: Essays in Honor of Thomas Parke Hughes and Agatha Chipley Hughes.
Michael Thad Allen and Gabrielle Hecht, eds. Cambridge, MA: MIT Press, 2001.

Turkle, Sherry. The Second Self: Computers and the Human Spirit (Twentieth Anniversary Edition). Cambridge, MA: MIT
Press, 2005.

Weinberg, Gerald M. The Psychology of Computer Programming. Litton Educational Publishing, Inc., 1971.

About the Author
Stuart Mawler
Stuart is an IT Consultant, bringing more than 15 years of IT experience, primarily as a software architect, to
his research interests in programming culture and the Sociology of Technology.

9STUART MAWLER

EDITORS
Bill Cope, University of Illinois, Urbana-Champaign, USA.
Mary Kalantzis, University of Illinois, Urbana-Champaign, USA.

EDITORIAL ADVISORY BOARD
Darin Barney, McGill University, Montreal, Quebec, Canada.
Marcus Breen, Northeastern University, Boston, USA.
G.K. Chadha, Jawahrlal Nehru University, India.
Simon Cooper, Monash University, Australia.
Bill Dutton, University of Oxford, United Kingdom.
Amareswar Galla, The University of Queensland, Australia.
David Hakken, University of Indiana, Bloomington, Indiana, USA.
Michele Knobel, Montclair State University, New Jersey, USA.
Jeannette Shaffer, Edtech Leaders, VA, USA.
Ravi S. Sharma, Nanyang Technological University, Singapore.
Robin Stanton, Australian National University, Canberra, Australia.
Telle Whitney, Anita Borg Institute for Women and Technology.

Please visit the Journal website at http://www.Technology-Journal.com
for further information about the Journal or to subscribe.

 THE UNIVERSITY PRESS JOURNALS

International Journal of the Arts in Society
Creates a space for dialogue on innovative theories and practices in the arts, and their inter-relationships with society.

ISSN: 1833-1866
http://www.Arts-Journal.com

International Journal of the Book
Explores the past, present and future of books, publishing, libraries, information, literacy and learning in the information

society. ISSN: 1447-9567
http://www.Book-Journal.com

Design Principles and Practices: An International Journal
Examines the meaning and purpose of ‘design’ while also speaking in grounded ways about the task of design and the

use of designed artefacts and processes. ISSN: 1833-1874
http://www.Design-Journal.com

International Journal of Diversity in Organisations, Communities and Nations
Provides a forum for discussion and builds a body of knowledge on the forms and dynamics of difference and diversity.

ISSN: 1447-9583
http://www.Diversity-Journal.com

International Journal of Environmental, Cultural, Economic and Social Sustainability
Draws from the various fields and perspectives through which we can address fundamental questions of sustainability.

ISSN: 1832-2077
http://www.Sustainability-Journal.com

Global Studies Journal
Maps and interprets new trends and patterns in globalization. ISSN 1835-4432

http://www.GlobalStudiesJournal.com

International Journal of the Humanities
Discusses the role of the humanities in contemplating the future and the human, in an era otherwise dominated by

scientific, technical and economic rationalisms. ISSN: 1447-9559
http://www.Humanities-Journal.com

International Journal of the Inclusive Museum
Addresses the key question: How can the institution of the museum become more inclusive? ISSN 1835-2014

http://www.Museum-Journal.com

International Journal of Interdisciplinary Social Sciences
Discusses disciplinary and interdisciplinary approaches to knowledge creation within and across the various social

sciences and between the social, natural and applied sciences.
ISSN: 1833-1882

http://www.Socialsciences-Journal.com

International Journal of Knowledge, Culture and Change Management
Creates a space for discussion of the nature and future of organisations, in all their forms and manifestations.

ISSN: 1447-9575
http://www.Management-Journal.com

International Journal of Learning
Sets out to foster inquiry, invite dialogue and build a body of knowledge on the nature and future of learning.

ISSN: 1447-9540
http://www.Learning-Journal.com

International Journal of Technology, Knowledge and Society
Focuses on a range of critically important themes in the various fields that address the complex and subtle relationships

between technology, knowledge and society. ISSN: 1832-3669
http://www.Technology-Journal.com

Journal of the World Universities Forum
Explores the meaning and purpose of the academy in times of striking social transformation.

ISSN 1835-2030
http://www.Universities-Journal.com

FOR SUBSCRIPTION INFORMATION, PLEASE CONTACT
 subscriptions@commonground.com.au

